Part Number Hot Search : 
0XB6TR EM1564 74HC5 SS34B 001GP7 OM7815H PSD953 PSC3506
Product Description
Full Text Search
 

To Download ACT-F1288N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ACT-F128K8 High Speed 1 Megabit Monolithic FLASH
CIRCUIT TECHNOLOGY
www.aeroflex.com
Features
s s s s s s s s s s s
Low Power Monolithic 128K x 8 FLASH TTL Compatible Inputs and CMOS Outputs Access Times of 60, 70, 90, 120 and 150ns +5V Programing, +5V Supply 100,000 Erase / Program Cycles Low Standby Current Page Program Operation and Internal Program Control Time Supports Full Chip Erase Embedded Erase and Program Algorithms Supports Full Chip Erase MIL-PRF-38534 Compliant Circuits Available
s s
Industry Standard Pinouts Packaging - Hermetic Ceramic
32 Lead, 1.6" x .6" x .20" Dual-in-line Package (DIP), Aeroflex code# "P4" q 32 Lead, .82" x .41" x .125" Ceramic Flat Package (FP), Aeroflex code# "F6" q 32 Lead, .82" x .41" x .132" Ceramic Flat Package (FP Lead Formed), Aeroflex code# "F7"
q
s
Sector Architecture
q q
8 Equal size sectors of 16K bytes each Any Combination of Sectors can be erased with one command sequence.
s s
Commercial, Industrial and Military Temperature Ranges DESC SMD Pending 5962-96690 (P4,F6,F7)
Block Diagram - DIP (P4) & Flat Packages (F6,F7)
CE WE OE A0 - A16 Vss 512Kx8 Vcc 8 I/O0-7 Pin Description I/O0-7 Data I/O
General Description
The ACT-F128K8 is a high speed, 1 megabit CMOS monolithic Flash module designed for full temperature range military, space, or high reliability applications. This device is input TTL and output CMOS compatible. The command register is written by bringing write enable (WE) and chip enable (CE) to a logic low level and output enable (OE) to a logic high level. Reading is accomplished when WE is high and CE, OE are both low, see Figure 9. Access time grades of 60ns, 70ns, 90ns, 120ns and 150ns maximum are standard. The ACT-F128K8 is available in a choice of
A0-16 Address Inputs WE CE OE VCC VSS NC Write Enable Chip Enable Output Enable Power Supply Ground Not Connected
eroflex Circuit Technology - Advanced Multichip Modules (c) SCD1676 REV A 5/6/98
General Description, Cont'd,
hermetically sealed ceramic packages; a 32 lead .82" x .41" x .125" flat package in both formed or unformed leads or a 32 pin 1.6"x.60" x.20" DIP package for operation over the temperature range -55C to +125C and military environmental conditions. The flash memory is organized as 128Kx8 bits and is designed to be programmed in-system with the standard system 5.0V Vcc supply. A 12.0V VPP is not required for write or erase operations. The device can also be reprogrammed with standard EPROM programmers (with the proper socket). The standard ACT-F128K8 offers access times between 60ns and 150ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the device has separate chip enable (CE), write enable (WE) and output enable (OE) controls. The ACT-F128K8 is command set compatible with JEDEC standard 1 Mbit EEPROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 12.0V Flash or EPROM devices. The ACT-F128K8 is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in less than 0.3 second. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array, (if it is not already programmed before) executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin. Also the device features a sector erase architecture. The sector mode allows for 16K byte blocks of memory to be erased and reprogrammed without affecting other blocks. The ACT-F128K8 is erased when shipped from the factory. The device features single 5.0V power supply operation for both read and write functions. lnternally generated and regulated voltages are provided for the program and erase operations. A low VCC detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of D7 or by the Toggle Bit feature on D6. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode. All bits of each die, or all bits within a sector of a die, are erased via Fowler-Nordhiem tunneling. Bytes are programmed one byte at a time by hot electron injection. A DESC Standard Military Drawing (SMD) number is pending.
Aeroflex Circuit Technology
2
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
z
Absolute Maximum Ratings
Parameter Case Operating Temperature Storage Temperature Range Supply Voltage Range Signal Voltage Range (Any Pin Except A9) Note 1 Maximum Lead Temperature (10 seconds) Data Retention Endurance (Write/Erase cycles) A9 Voltage for sector protect, Note 2 VID Symbol TC TSTG VCC VG Range -55 to +125 -65 to +150 -2.0 to +7.0 -2.0 to +7.0 300 10 100,000 Minimum -2.0 to +14.0 V Units C C V V C Years
Note 1. Minimum DC voltage on input or I/O pins is -0.5V. During voltage transitions, inputs may undershoot VSS to -2.0v for periods of up to 20ns. Maximum DC voltage on input and I/O pins is VCC + 0.5V. During voltage transitions, inputs and I/O pins may overshoot to VCC + 2.0V for periods up to 20 ns. Note 2. Minimum DC input voltage on A9 is -0.5V. During voltage transitions, A9 may undershoot VSS to -2.0V for periods of up to 20ns. Maximum DC input voltage on A9 is +12.5V which may overshoot to 14.0V for periods up to 20ns.
Normal Operating Conditions
Symbol VCC VIH VIL Tc VID Parameter Power Supply Voltage Input High Voltage Input Low Voltage Operating Temperature (Military) A9 Voltage for sector protect Minimum +4.5 +2.0 -0.5 -55 11.5 Maximum +5.5 VCC + 0.5 +0.8 +125 12.5 Units V V V C V
Capacitance
(VIN= 0V, f = 1MHz, Tc = 25C) Symbol CAD COE CWE CCE CI/O Parameter A0 - A16 Capacitance OE Capacitance Write Enable Capacitance Chip Enable Capacitance I/O0 - I/O7 Capacitance Maximum 15 15 15 15 15 Units pF pF pF pF pF
Parameters Guaranteed but not tested
DC Characteristics - CMOS Compatible
(Vcc = 5.0V, Vss = 0V, Tc = -55C to +125C, unless otherwise indicated) Parameter Input Leakage Current Output Leakage Current Active Operating Supply Current for Read (1) Active Operating Supply Current for Program or Erase (2) Operating Standby Supply Current Output Low Voltage Output High Voltage Low Power Supply Lock-Out Voltage (4) Sym ILI ILO ICC1 ICC2 ICC3 VOL VOH VLKO Conditions VCC = 5.5V, VIN = GND to VCC VCC = 5.5V, VIN = GND to VCC CE = VIL, OE = VIH, f = 5MHz CE = VIL, OE = VIH VCC = 5.5V, CE = VIH, f = 5MHz IOL = +8.0 mA, VCC = 4.5V IOH = -2.5 mA, VCC = 4.5V 0.85 x VCC 3.2 Speeds 60, 70, 90, 120 & 150ns Minimum Maximum 10 10 35 50 1.6 0.45 Units A A mA mA mA V V V
Note 1. The Icc current listed includes both the DC operating current and the frequency dependent component (At 6 MHz). The frequency component typically is less than 2 mA/MHz, with OE at VIN. Note 2. Icc active while Embedded Algorithm (Program or Erase) is in progress. Note 3. DC Test conditions: VIL = 0.3V, VIH = VCC - 0.3V, unless otherwise indicated. Note 4. Parameter Guaranteed by design, but not tested.
Aeroflex Circuit Technology
3
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
AC Characteristics - Read Only Operations
(Vcc = 5.0V, Vss = 0V, Tc = -55C to +125C) Parameter Read Cycle Time Address Access Time Chip Enable Access Time Output Enable to Output Valid Chip Enable to Output High Z (1) Output Enable High to Output High Z(1) Output Hold from Address, CE or OE Change, Whichever is First Note 1. Guaranteed by design, but not tested Symbol tAVAV tAVQV tELQV tGLQV tEHQZ tGHQZ tAXQX tRC tACC tCE tOE tDF tDF tOH 0 60 60 60 30 20 20 0 -60 70 70 70 35 20 20 0 -70 90 90 90 40 25 25 0 -90 -120 120 120 120 50 30 30 0 -150 150 150 150 55 35 35 JEDEC Stand'd Min Max Min Max Min Max Min Max Min Max Units ns ns ns ns ns ns ns
AC Characteristics - Write/Erase/Program Operations, WE Controlled
(Vcc = 5.0V, Vss = 0V, Tc = -55C to +125C) Parameter Write Cycle Time Chip Enable Setup Time Write Enable Pulse Width Address Setup Time Data Setup Time Data Hold Time Address Hold Time Write Enable Pulse Width High Duration of Byte Programming Operation Typ = 16 s Sector Erase Time Read Recovery Time before Write Vcc Setup Time Chip Programming Time Chip Erase Time tWHWH3 Symbol tAVAC tELWL tWLWH tAVWL tDVWH tWHDX tWLAX tWHWL tWHWH1 tWHWH2 tGHWL tVCE 0 50 12.5 120 tWC tCE tWP tAS tDS tDH tAH tWPH 60 0 30 0 30 0 45 20 -60 70 0 35 0 30 0 45 20 -70 90 0 45 0 45 0 45 20 -90 -120 120 0 50 0 50 0 50 20 -150 150 0 50 0 50 0 50 20 JEDEC Stand'd Min Max Min Max Min Max Min Max Min Max Units ns ns ns ns ns ns ns ns s Sec s s 12.5 120 Sec Sec
14 TYP 14 TYP 14 TYP 14 TYP 14 TYP 60 0 50 12.5 120 60 0 50 12.5 120 60 0 50 12.5 120 60 0 50 60
AC Characteristics - Write/Erase/Program Operations, CE Controlled
(Vcc = 5.0V, Vss = 0V, Tc = -55C to +125C) Parameter Write Cycle Time Write Enable Setup Time Chip Enable Pulse Width Address Setup Time Data Setup Time Data Hold Time Address Hold Time Chip Select Pulse Width High Duration of Byte Programming Sector Erase Time Read Recovery Time Chip Programming Time Chip Erase Time tWHWH3 Symbol tAVAC tWLEL tELEH tAVEL tDVEH tEHDX tELAX tEHEL tWHWH1 tWHWH2 tWC tWS tCP tAS tDS tDH tAH tCPH 60 0 30 0 30 0 45 20 -60 70 0 35 0 30 0 45 20 -70 90 0 45 0 45 0 45 20 -90 -120 120 0 50 0 50 0 50 20 -150 150 0 50 0 50 0 50 20 JEDEC Stand'd Min Max Min Max Min Max Min Max Min Max Units ns ns ns ns ns ns ns ns s Sec ns 12.5 120 Sec Sec
14 TYP 14 TYP 14 TYP 14 TYP 14 TYP 60 0 12.5 120 0 12.5 120 60 0 12.5 120 60 0 12.5 120 60 0 60
tGHEL
Aeroflex Circuit Technology
4
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Device Operation
The ACT-F128K8 Monolithic module is composed of one, 1 megabit flash EEPROM. Programming of the ACT-F128K8 is accomplished by executing the program command sequence. The program algorithm, which is an internal algorithm, automatically times the program pulse widths and verifies proper cell status. Sectors can be programed and verified in less than 0.3 second. Erase is accomplished by executing the erase command sequence. The erase algorithm, which is internal, automatically preprograms the array if it is not already programed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell status. The entire memory is typically erased and verified in 3 seconds (if pre-programmed). The sector mode allows for 16K byte blocks of memory to be erased and reprogrammed without affecting other blocks.
programming, the device will draw active current until the operation is completed.
WRITE
Device erasure and programming are accomplished via the command register. The contents of the register serve as input to the internal state machine. The state machine outputs dictate the function of the device. The command register itself does not occupy an addressable memory location. The register is a latch used to store the command, along with address and data information needed to execute the command. The command register is written by bringing WE to a logic low level (VIL), while CE is low and OE is at VIH. Addresses are latched on the falling edge of WE or CE, whichever happens later. Data is latched on the rising edge of the WE or CE whichever occurs first. Standard microprocessor write timings are used. Refer to AC Program Characteristics and Waveforms, Figures 3, 8 and 13.
Bus Operation
READ
The ACT-F128K8 has two control functions, both of which must be logically active, to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output-Enable (OE) is the output control and should be used to gate data to the output pins of the chip selected. Figure 7 illustrates AC read timing waveforms.
Command Definitions
Device operations are selected by writing specific address and data sequences into the command register. Table 3 defines these register command sequences.
READ/RESET COMMAND
The read or reset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The device remains enabled for reads until the command register contents are altered. The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard Microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Figure 7 for the specific timing parameters.
OUTPUT DISABLE
With Output-Enable at a logic high level (VIH), output from the device is disabled. Output pins are placed in a high impedance state.
STANDBY MODE
The ACT-F128K8 has two standby modes, a CMOS standby mode (CE input held at Vcc + 0.5V), where the current consumed is typically less than 400 A; and a TTL standby mode (CE is held VIH) is approximately 1 mA. In the standby mode the outputs are in a high impedance state, independent of the OE input. If the device is deselected during erasure or Table 1 - Bus Operations
Operation READ STANDBY OUTPUT DISABLE WRITE ENABLE SECTOR PROTECT VERIFY SECTOR PROTECT
Aeroflex Circuit Technology
Table 2 - Sector Addresses Table
I/O DOUT HIGH Z HIGH Z DIN X Code SA0 SA1 SA2 SA3 SA4 A16 A15 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 A14 0 1 0 1 0 1 0 1 Address Range 00000h - 03FFFh 04000h - 07FFFh 08000h - 0BFFFh 0C000h - 0FFFFh 10000h - 13FFFh 14000h - 17FFFh 18000h - 1BFFFh 1C000h - 1FFFFh
Plainview NY (516) 694-6700
CE OE WE A0 A1 A9 L H L L L L L X H H VID L H X H L L H A0 A1 A9 X X X X X X
A0 A1 A9 X L X H VID VID
SA5 SA6 SA7
5
SCD1676 REV A 5/6/98
Table 3 -- Commands Definitions
Command Sequence Read/Reset Byte Program Chip Erase Sector Erase Bus Write Cycle Req'd 4 6 6 6 First Bus Write Second Bus Write Third Bus Write Cycle Cycle Cycle Addr 5555H 5555H 5555H 5555H Data AAH AAH AAH AAH Addr 2AAAH 2AAAH 2AAAH 2AAAH Data 55H 55H 55H 55H Addr 5555H 5555H 5555H 5555H Data F0H A0H 80H 80H Fourth Bus Read/Write Cycle Addr RA PA 5555H 5555H Data RD PD AAH AAH 2AAAH 2AAAH 55H 55H 5555H SA 10H 30H Fifth Bus Write Sixth Bus Write Cycle Cycle Addr Data Addr Data
NOTES: 1. Address bit A15 = X = Don't Care. Write Sequences may be initiated with A15 in either state. 2. Address bit A16 = X = Don't Care for all address commands except for Program Address (PA) and Sector Address (SA). 3. RA = Address of the memory location to be read PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE pulse. SA = Address of the sector to be erased. The combination of A16, A15, A14 will uniquely select any sector. 4. RD = Data read from location RA during read Operation. PD = Data to be programmed at location PA. Data is latched on the rising edge of WE.
BYTE PROGRAMING
The device is programmed on a byte-byte basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of CE or WE, whichever occurs later, while the data is latched on the rising edge of CE or WE whichever occurs first. The rising edge of CE or WE (whichever happens first) begins programming using the Embedded Program Algorithm. Upon executing the program algorithm command sequence the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell. The automatic programming operation is completed when the data on D7 (also used as Data Polling) is equivalent to data written to this bit at which time the device returns to the read mode and addresses are no longer latched. Therefore, the device requires that a valid address be supplied by the system at this particular instance of time for Data Polling operations. Data Polling must be performed at the memory location which is being programmed. Any commands written to the chip during the Embedded Program Algorithm will be ignored. Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may cause the device to exceed programming time limits (D5 = 1) or result in an apparent success, according to the data polling algorithm, but a read from reset/read mode will show that the data is still "0". Only erase operations can convert "0"s to "1"s. Figure 3 illustrates the programming algorithm using typical command strings and bus operations.
device prior to erase. Upon executing the Embedded Erase Algorithm command sequence (Figure 4) the device will automatically program and verify the entire memory for an all zero data pattem prior to electrical erase. The erase is performed concurrently on all sectors at the same time . The system is not required to provide any controls or timings during these operations. Note: Post Erase data state is all "1"s. The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on D7 is "1" (see Write Operation Status section - Table 3) at which time the device retums to read mode. See Figures 4 and 9.
SECTOR ERASE
Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "setup" command. Two more "unlock" write cycles are then followed by the sector erase command. The sector address (any address location within the desired sector) is latched on the falling edge of WE, while the command (30H) is latched on the rising edge of WE. After a time-out of 80s from the rising edge of the last sector erase command, the sector erase operation will begin. Multiple sectors may be erased concurrently by writing the six bus cycle operations as described above. This sequence is followed with writes of the sector erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 80s otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of 80s from the rising edge of the last WE will initiate the execution of the Sector Erase command(s). If another falling edge of the WE occurs within the 80s time-out window the timer is reset. (Monitor D3 to determine if the sector erase timer window is still open, see section D3, Sector Erase Timer.) Any commarid other than Sector Erase during this period will reset the device to read mode, ignoring the previous command string. In that case, restart the erase on those sectors and allow them to complete.
6
SCD1676 REV A 5/6/98 Plainview NY (516) 694-6700
CHIP ERASE
Chip erase is a six bus cycle operation. There are two 'unlock' write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command. Chip erase does not require the user to program the
Aeroflex Circuit Technology
Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 7). Sector erase does not require the user to program the device prior to erase. The device automatically programs all memory locations in the sector(s) to be erased prior to electrical erase. When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations. Post Erase data state is all "1"s. The automatic sector erase begins after the 80s time out from the rising edge of the WE pulse for the last sector erase command pulse and terminates when the data on D7, Data Polling, is "1" (see Write Operatlon Status secton) at which time the device returns to read mode. Data Polling must be performed at an address within any of the sectors being erased. Figure 4 illustrates the Embedded Erase Algorithm.
POWER-UP WRITE INHIBIT
Power-up of the device with WE = CE = VIL and OE = VIH will not accept commands on the rising edge of WE. The internal state machine is automatically reset to the read mode on power-up.
Write Operation Status
D7 DATA POLLING
The ACT-F128K8 features Data Polling as a method to indicate to the host that the internal algorithms are in progress or completed. During the program algorithm, an attempt to read the device will produce compliment data of the data last written to D7. Upon completion of the programming algorithm an attempt to read the device will produce the true data last written to D7. Data Polling is valid after the rising edge of the fourth WE pulse in the four write pulse sequence. During the erase algorithm, D7 will be "0" until the erase operation is completed. Upon completion data at D7 is "1". For chip erase, the Data Polling is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. For sector erase, the Data Polling is Valid after the last rising edge of the sector erase WE pulse. The Data Polling feature is only active during the programming algorithm, erase algorithm, or sector erase time-out. See Figures 6 and 10 for the Data Polling specifications.
Data Protection
The ACT-F128K8 is designed to offer protection against accidental erasure or programming caused by spurious system level singles that may exist during power transitions. During power up the device automatically resets the internal state machine in the read mode. Also, with its control register architecture, alteration of the memory content only occurs after successful completion of specific multi-bus cycle command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from Vcc power-up and power-down transitions or system noise.
LOW Vcc WRITE INHIBIT
To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for VCC less than 3.2V (typically 3.7V). If VCC < VLKO, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to read mode. Subsequent writes will be ignored until the Vcc level is greater than VLKO. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above 3.2V.
D6 TOGGLE BIT
The ACT-F128K8 also features the "Toggle Bit" as a method to indicate to the host system that algorithms are in progress or completed. During a program or erase algorithm cycle, successive attempts to read data from the device will result in D6 toggling between one and zero. Once the program or erase algorithm cycle is completed, D6 Will stop toggling and valid data will be read on successive attempts. During programming the Toggle Bit is valid after the rising edge of the fourth WE pulse in the four write pulse sequence. For chip erase the Toggle Bit is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. For Sector erase, the Toggle Bit is valid after the last rising edge of the sector erase WE pulse. The Toggle Bit is active during the sector time out. See Figure 1 and 5.
WRITE PULSE GLITCH PROTECTION
Noise pulses of less than 5ns (typical) on OE, CE or WE will not initiate a write cycle.
LOGICAL INHIBIT
Writing is inhibited by holding anyone of OE = VIL, CE = VIH or WE = VIH. To initiate a write cycle CE and WE must be logical zero while OE is a logical one.
Aeroflex Circuit Technology
7
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Table 4 -- Hardware Sequence Flags
Status In Progress Auto-Programming Programming in Auto Erase Erase in Auto Erase Auto-Programming Exceeding Time Limits Programming in Auto Erase Erase in Auto Erase D7 D7 0 0 D7 T0 0 D6 Toggle Toggle Toggle Toggle Toggle Toggle D5 D4 D3 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 Reserved for future use Reserved for future use D2 - D0
D5 EXCEEDED TIMING LIMITS
D5 will indicate if the program or erase time has exceeded the specified limits. Under these conditions D5 will produce a "1". The Program or erase cycle was not successfully completed. Data Polling is the only operation function of the device under this condition. The CE circuit will partially power down the device under these conditions by approximately 8 mA per chip. The OE and WE pins will control the output disable functions as shown in Table 1. To reset the device, write the reset command sequence to the device. This allows the system to continue to use the other active sectors in the device.
Sector Protection Algorithims
SECTOR PROTECTION
The ACT-F128K8 features hardware sector protection which will disable both program and erase operations to an individual sector or any group of sectors. To activate this mode, the programming equipment must force VID on control pin OE and address pin A9. The sector addresses should be set using higher address lines A16, A15, and A14. The protection mechanism begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. It is also possible to verify if a sector is protected during the sector protection operation. This is done by setting CE = OE = VIL and WE = VIH (A9 remains high at VID). Reading the device at address location XXX2H, where the higher order addresses (A16, A15 and A14) define a particular sector, will produce 01H at data outputs D0 D7, for a protected sector.
D4 - HARDWARE SEQUENCE FLAG
If the device has exceeded the specified erase or program time and D5 is "1", then D4 Will indicate which step in the algorithm the device exceeded the limits. A "0" in D4 indicates in programming, a "1" indicates an erase. (See Table 4)
D3 SECTOR ERASE TIMER
After the completion of the initial sector erase command sequence the sector erase time-out will begin. D3 will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence. If Data Polling or the Toggle Bit indicates the device has been written with a valid erase command, D3 may be used to determine if the sector erase timer window is still open. If D3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If D3 is low ("0"), the device will accept additional sector erase commands. To ensure the command has been accepted, the software should check the status of D3 prior to and following each subsequent sector erase command. If D3 were high on the second status check, the command may not have been accepted.
SECTOR UNPROTECT
The ACT-F128K8 also features a sector unprotect mode, so that a protected sector may be unprotected to incorporate any changes in the code. All sectors should be protected prior to unprotecting any sector. To activate this mode, the programming equipment must force VID on control pins OE, CE, and address pin A9. The address pins A6, A7, and A12 should be set to VIH, and A6 = VIL. The unprotection mechanism begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. It is also possible to determine if a sector is unprotected in the system by writing the autoselect command. Performing a read operation at address location XXX2H, where the higher order addresses (A16, A15, and A14) define a particular sector address, will produce 00H at data outputs (D0-D7) for an unprotected sector.
Aeroflex Circuit Technology
8
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 1 AC Waveforms for Toggle Bit During Embedded Algorithm Operations
CE
tOEH
WE
tOES
OE
Data D0-D7
D6=Toggle
D6=Toggle
D6 Stop Toggle
D0-D7 Valid
tOE
Figure 2 AC Test Circuit
Current Source IOL
To Device Under Test CL = 50 pF IOH Current Source
Parameter Input Pulse Level Input Rise and Fall VZ ~ 1.5 V (Bipolar Supply) Input and Output Timing Reference Output Lead Capacitance
Typical 0 - 3.0 5 1.5 50
Units V ns V pF
Notes: 1) VZ is programmable from -2V to +7V. 2) IOL and IOH programmable from 0 to 16 mA. 3) Tester Impedance ZO = 75. 4) VZ is typically the midpoint of VOH and VOL. 5) IOL and IOH are adjusted to simulate a typical resistance load circuit. 6) ATE Tester includes jig capacitance.
Aeroflex Circuit Technology
9
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 3 Programming Algorithm
Bus Operations Standby Write Read Standby
Command Sequence
Comments
Program
Valid Address/Data Sequence Data Polling to Verify Programming Compare Data Output to Data Expected
Start
Write Program Command Sequence (See Below)
Data Poll Device
Increment Address
No Last Address ? Yes Programming Complete
Program Command Sequence (Address/Command):
5555H/AAH
2AAAH/55H
5555H/A0H
Programming Address/Program Data
Aeroflex Circuit Technology
10
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 4 Erase Algorithm
Bus Operations Standby Write Read Standby
Command Sequence
Comments
Erase Data Polling to Verify Erasure Compare Output to FFH
Start
Write Erase Command Sequence (See Below)
Data Poll or Toggle Bit Successfully Completed
Erasure Completed
Chip Erase Command Sequence (Address/Command)
Individual Sector/Multiple Sector Erase Command Sequence (Address/Command)
5555H/AAH
5555H/AAH
2AAAH/55H
2AAAH/55H
5555H/80H
5555H/80H
5555H/AAH
5555H/AAH
2AAAH/55H
2AAAH/55H
5555H/10H
Sector Address/30H
Sector Address/30H Additional Sector Erase Commands are Optional Sector Address/30H
Note 1. To Ensure the command has been accepted, the system software should check the status of D3 prior to and following each subsequent sector erase command. If D3 were high on the second status check, the command may not have been accepted.
Aeroflex Circuit Technology
11
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 5 Toggle Bit Algorithm
Figure 6 Data Polling Algorithm
Start VA = Byte Address for Programming = Any of the Sector Addresses within the sector being erased during sector erase operation = XXXXH during Chip Erase
Start VA = Byte Address for Programming = Any of the Sector Addresses within the sector being erased during sector erase operation = XXXXH during Chip Erase
Read Byte D0-D7 Address = VA
Read Byte D0-D7 Address = VA
D6 = Toggle ? Yes No
No
D7 = Data ? No No
Yes
D5 = 1 ? Yes Read Byte D0-D7 Address = VA
D5 = 1 ? Yes Read Byte D0-D7 Address = VA
D6 = Toggle? (Note 1) Yes Fail
No
D7 = Toggle? (Note 1) Pass Fail No
Yes
Pass
Note 1. D6 is rechecked even if D5 = "1" because D6 may stop toggling at the same time as D5 changes to "1".
Note 1. D7 is rechecked even if D5 = "1" because D7 may change simultaneously with D5.
Aeroflex Circuit Technology
12
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 7 AC Waveforms for Read Operations
tRC Addresses tACC CE tDF OE tOE
Addresses Stable
WE tCE Outputs
High Z
tOH Output Valid
High Z
Figure 8 Write/Erase/Program Operation, WE Controlled
Data Polling Addresses 5555H tWC CE tGHWL OE tWP WE tCE tDH AOH Data tDS PD D7 DOUT tOH tOE tWPH tDF tWHWH1 tAS PA tAH PA tRC
5.0V tCE
Notes: 1. PA is the address of the memory location to be programmed. 2. PD is the data to be programmed at byte address. 3. D7 is the 0utput of the complement of the data written to the deviced. 4. Dout is the output of the data written to the device. 5. Figure indicates last two bus cycles of four bus cycle sequence.
Aeroflex Circuit Technology
13
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 9 AC Waveforms Chip/Sector Erase Operations
tAH Addresses 5555H tAS 2AAAH Data Polling 5555H 5555H 2AAAH SA
CE tGHWL OE tWP WE tCE Data tWPH tDH AAH tDS VCC 55H 80H AAH 55H 10H/30H
tVCE
Notes: 1. SA is the sector address for sector erase.
Figure 10 AC Waveforms for Data Polling During Embedded Algorithm Operations
tCH CE tDF tOE OE tOEH WE tCE tOH *
D7 D7 D7= Valid Data High Z
tWHWH1 or 2
D0-D6 D0-D6=Invalid
D0-D6 Valid Data
tOE * D7=Valid Data (The device has completed the Embedded operation).
Aeroflex Circuit Technology
14
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 11 Sector Protection Algorithm
Start
Set Up Sector Address (A16, A15, A14)
PLSCNT = 1
OE = VID A9 = VID, CE = VIL
Activate WE Pulse
Time Out 100s
Increment PLSCNT
Power Down OE WE = VIH CE = OE = VIH A9 Should Remain VID
Read From Sector Address = SA, A0 = 0, A1 = 1, A6 = 0
No No PLSCNT = 25 ? Yes Data = 01H ?
Yes
Device Failure
Protect Another Sector?
Yes
No Remove VID from A9 Write Reset Command
Sector Protection Complete
Aeroflex Circuit Technology
15
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 12 Sector Unprotect Algorithm
Start
Set VCC = 5.0 V
Protect All Sectors
PLSCNT = 1
Set Up Sector Address Unprotected Mode (A12 = A7 = VIH, A6 = VIL)
Set VCC = 5.0 V
Set OE = CE = A9 = VID
Activate WE Pulse
Time Out 10ms
Increment PLSCNT
Set OE = CE = VIL Remove VID from A9
Set VCC = 4.25 V
Write Autoselect Command Sequence
Setup Sector Address SA0 Set A1 = 1, A0 = 0
Read Data From Device No
Increment Sector Address
Data = 00H ? Yes
No
Write Reset Command
PLSCNT = 1000 ?
Yes Device Failure
No
Sector Address = SA7 ? Yes Set VCC = 5.0 V
Notes: SA0 = Sector Address for initial sector SA7 = Sector Address for last sector Please refer to Table 2
Write Reset Command
Sector Unprotect Completed
Aeroflex Circuit Technology
16
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Figure 13 Write/Erase/Program Operation, CE Controlled
Data Polling Addresses 5555H tWC WE tGHEL OE tCP CE tWS tCPH tDH AOH Data tDS PD D7 DOUT tWHWH1 tAS PA tAH PA
5.0V
Notes: 1. PA is the address of the memory location to be programmed. 2. PD is the data to be programmed at byte address. 3. D7 is the 0utput of the complement of the data written to the device. 4. DOUT is the output of the data written to the device. 5. Figure indicates last two bus cycles of four bus cycle sequence.
Aeroflex Circuit Technology
17
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Pin Numbers & Functions
32 Pins -- DIP Package
1 2 3 4 5\ 6 7 8 9 10 11 12 13 14 15 16 NC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I/O3 I/O4 I/O5 I/O6 I/O7 CE A10 OE A11 A9 A8 A13 A14 NC WE VCC
Package Outline "P4" -- .590" x 1.67" DIP Package
1.623 MAX Pin 32
Pin 1 Pin 1 Identifier
.165 MAX
.604 MAX
.100 TYP
.055 .045
.020 .016 TYP
.060 .040 TYP
.125 MIN
.012 .009
.610 .590
All dimensions in inches
Aeroflex Circuit Technology
18
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Pin Numbers & Functions
32 Pins -- Flat Package
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I/O3 I/O4 I/O5 I/O6 I/O7 CE A10 OE A11 A9 A8 A13 A14 NC WE VCC
Package Outline "F6" -- 32 Lead, Ceramic Flat Package
.830 MAX
Pin 32
Pin 17
.415 MAX
.125 MAX
Pin 1
Pin 16 .400 MIN +.002 .005 -.001
All dimensions in inches
.017 .002 .750 (15 spaces at .050) 2 sides
Aeroflex Circuit Technology
19
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
Pin Numbers & Functions
32 Pins -- Flat Package
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I/O3 I/O4 I/O5 I/O6 I/O7 CE A10 OE A11 A9 A8 A13 A14 NC WE VCC
Package Outline "F7" -- 32 Lead, Ceramic Flat Package
.830 MAX Pin 32 Pin 17
.132 MAX .006 TYP
Base Plane .125 MAX
.415 MAX .025 TYP Pin 1 .017 .002 .750 (15 spaces at .050) 2 sides Pin 16
.530 .005
.068 TYP
+.002 .005 -.001
0 / -4
.030 TYP Seating Plane
All dimensions in inches
Aeroflex Circuit Technology
20
SCD1676 REV A 5/6/98
Plainview NY (516) 694-6700
CIRCUIT TECHNOLOGY
Ordering Information
Model Number
ACT-F128K8N-150F6Q ACT-F128K8N-120F6Q ACT-F128K8N-090F6Q ACT-F128K8N-070F6Q ACT-F128K8N-060F6Q ACT-F128K8N-150F7Q ACT-F128K8N-120F7Q ACT-F128K8N-090F7Q ACT-F128K8N-070F7Q ACT-F128K8N-060F7Q ACT-F128K8N-150P4Q ACT-F128K8N-120P4Q ACT-F128K8N-090P4Q ACT-F128K8N-070P4Q ACT-F128K8N-060P4Q * Pending
DESC Drawing Number
5962-9669001HTC* 5962-9669002HTC* 5962-9669003HTC* 5962-9669004HTC* 5962-9669005HTC* 5962-9669001HUC* 5962-9669002HUC* 5962-9669003HUC* 5962-9669004HUC* 5962-9669005HUC* 5962-9669001HYC* 5962-9669002HYC* 5962-9669003HYC* 5962-9669004HYC* 5962-9669005HYC*
Speed
150 ns 120 ns 90 ns 70 ns 60 ns 150 ns 120 ns 90 ns 70 ns 60 ns 150 ns 120 ns 90 ns 70 ns 60 ns
Package
Flat Pack Flat Pack Flat Pack Flat Pack Flat Pack Flat Pack (Formed) Flat Pack (Formed) Flat Pack (Formed) Flat Pack (Formed) Flat Pack (Formed) DIP Pack DIP Pack DIP Pack DIP Pack DIP Pack
Part Number Breakdown
ACT- F 128 8 N- 090 F6 Q
Aeroflex Circuit Technology Memory Type F = FLASH EEPROM Memory Depth Memory Width, Bits Options N = None Memory Speed, ns Screening C = Commercial Temp, 0C to +70C I = Industrial Temp, -40C to +85C T = Military Temp, -55C to +125C M = Military Temp, -55C to +125C, Screening * Q = MIL-PRF-38534 Compliant / SMD Package Type & Size Surface Mount Packages F6 = .82" x .40" 32 Lead FP Unformed F7 = .82" x .40" 32 Lead FP Formed Thru-Hole Packages P4 = 32 Pin DIP
* Screened to the individual test methods of MIL-STD-883
Specifications subject to change without notice.
Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830
Aeroflex Circuit Technology
Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: 1-(800) 843-1553
21
SCD1676 REV A 5/6/98 Plainview NY (516) 694-6700


▲Up To Search▲   

 
Price & Availability of ACT-F1288N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X